Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9082, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643273

ABSTRACT

Studying the oculomotor system provides a unique window to assess brain health and function in various clinical populations. Although the use of detailed oculomotor parameters in clinical research has been limited due to the scalability of the required equipment, the development of novel tablet-based technologies has created opportunities for fast, easy, cost-effective, and reliable eye tracking. Oculomotor measures captured via a mobile tablet-based technology have previously been shown to reliably discriminate between Parkinson's Disease (PD) patients and healthy controls. Here we further investigate the use of oculomotor measures from tablet-based eye-tracking to inform on various cognitive abilities and disease severity in PD patients. When combined using partial least square regression, the extracted oculomotor parameters can explain up to 71% of the variance in cognitive test scores (e.g. Trail Making Test). Moreover, using a receiver operating characteristics (ROC) analysis we show that eye-tracking parameters can be used in a support vector classifier to discriminate between individuals with mild PD from those with moderate PD (based on UPDRS cut-off scores) with an accuracy of 90%. Taken together, our findings highlight the potential usefulness of mobile tablet-based technology to rapidly scale eye-tracking use and usefulness in both research and clinical settings by informing on disease stage and cognitive outcomes.


Subject(s)
Parkinson Disease , Humans , Eye Movements , Cognition , Movement , Patient Acuity
2.
Front Neurol ; 14: 1243594, 2023.
Article in English | MEDLINE | ID: mdl-37745656

ABSTRACT

A growing body of evidence supports the link between eye movement anomalies and brain health. Indeed, the oculomotor system is composed of a diverse network of cortical and subcortical structures and circuits that are susceptible to a variety of degenerative processes. Here we show preliminary findings from the baseline measurements of an ongoing longitudinal cohort study in MS participants, designed to determine if disease and cognitive status can be estimated and tracked with high accuracy based on eye movement parameters alone. Using a novel gaze-tracking technology that can reliably and accurately track eye movements with good precision without the need for infrared cameras, using only an iPad Pro embedded camera, we show in this cross-sectional study that several eye movement parameters significantly correlated with clinical outcome measures of interest. Eye movement parameters were extracted from fixation, pro-saccade, anti-saccade, and smooth pursuit visual tasks, whereas the clinical outcome measures were the scores of several disease assessment tools and standard cognitive tests such as the Expanded Disability Status Scale (EDSS), Brief International Cognitive Assessment for MS (BICAMS), the Multiple Sclerosis Functional Composite (MSFC) and the Symbol Digit Modalities Test (SDMT). Furthermore, partial least squares regression analyses show that a small set of oculomotor parameters can explain up to 84% of the variance of the clinical outcome measures. Taken together, these findings not only replicate previously known associations between eye movement parameters and clinical scores, this time using a novel mobile-based technology, but also the notion that interrogating the oculomotor system with a novel eye-tracking technology can inform us of disease severity, as well as the cognitive status of MS participants.

3.
Front Neurol ; 14: 1204733, 2023.
Article in English | MEDLINE | ID: mdl-37396780

ABSTRACT

The idea that eye movements can reflect certain aspects of brain function and inform on the presence of neurodegeneration is not a new one. Indeed, a growing body of research has shown that several neurodegenerative disorders, such as Alzheimer's and Parkinson's Disease, present characteristic eye movement anomalies and that specific gaze and eye movement parameters correlate with disease severity. The use of detailed eye movement recordings in research and clinical settings, however, has been limited due to the expensive nature and limited scalability of the required equipment. Here we test a novel technology that can track and measure eye movement parameters using the embedded camera of a mobile tablet. We show that using this technology can replicate several well-known findings regarding oculomotor anomalies in Parkinson's disease (PD), and furthermore show that several parameters significantly correlate with disease severity as assessed with the MDS-UPDRS motor subscale. A logistic regression classifier was able to accurately distinguish PD patients from healthy controls on the basis of six eye movement parameters with a sensitivity of 0.93 and specificity of 0.86. This tablet-based tool has the potential to accelerate eye movement research via affordable and scalable eye-tracking and aid with the identification of disease status and monitoring of disease progression in clinical settings.

4.
Front Neurol ; 14: 1194811, 2023.
Article in English | MEDLINE | ID: mdl-37292138

ABSTRACT

Introduction: Clinically relevant mutations to voltage-gated ion channels, called channelopathies, alter ion channel function, properties of ionic currents, and neuronal firing. The effects of ion channel mutations are routinely assessed and characterized as loss of function (LOF) or gain of function (GOF) at the level of ionic currents. However, emerging personalized medicine approaches based on LOF/GOF characterization have limited therapeutic success. Potential reasons are among others that the translation from this binary characterization to neuronal firing is currently not well-understood-especially when considering different neuronal cell types. In this study, we investigate the impact of neuronal cell type on the firing outcome of ion channel mutations. Methods: To this end, we simulated a diverse collection of single-compartment, conductance-based neuron models that differed in their composition of ionic currents. We systematically analyzed the effects of changes in ion current properties on firing in different neuronal types. Additionally, we simulated the effects of known mutations in KCNA1 gene encoding the KV1.1 potassium channel subtype associated with episodic ataxia type 1 (EA1). Results: These simulations revealed that the outcome of a given change in ion channel properties on neuronal excitability depends on neuron type, i.e., the properties and expression levels of the unaffected ionic currents. Discussion: Consequently, neuron-type specific effects are vital to a full understanding of the effects of channelopathies on neuronal excitability and are an important step toward improving the efficacy and precision of personalized medicine approaches.

5.
Brain ; 145(9): 2991-3009, 2022 09 14.
Article in English | MEDLINE | ID: mdl-34431999

ABSTRACT

We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1-3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1-3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.


Subject(s)
Epilepsy, Generalized , Epileptic Syndromes , Intellectual Disability , NAV1.6 Voltage-Gated Sodium Channel , Epilepsy, Generalized/drug therapy , Epilepsy, Generalized/genetics , Epileptic Syndromes/drug therapy , Epileptic Syndromes/genetics , Genetic Association Studies , Humans , Infant , Intellectual Disability/genetics , Mutation , NAV1.6 Voltage-Gated Sodium Channel/genetics , Prognosis , Seizures/drug therapy , Seizures/genetics , Sodium Channel Blockers/therapeutic use
6.
Front Neurol ; 12: 703970, 2021.
Article in English | MEDLINE | ID: mdl-34566847

ABSTRACT

Introduction: Among genetic paroxysmal movement disorders, variants in ion channel coding genes constitute a major subgroup. Loss-of-function (LOF) variants in KCNA1, the gene coding for KV1.1 channels, are associated with episodic ataxia type 1 (EA1), characterized by seconds to minutes-lasting attacks including gait incoordination, limb ataxia, truncal instability, dysarthria, nystagmus, tremor, and occasionally seizures, but also persistent neuromuscular symptoms like myokymia or neuromyotonia. Standard treatment has not yet been developed, and different treatment efforts need to be systematically evaluated. Objective and Methods: Personalized therapeutic regimens tailored to disease-causing pathophysiological mechanisms may offer the specificity required to overcome limitations in therapy. Toward this aim, we (i) reviewed all available clinical reports on treatment response and functional consequences of KCNA1 variants causing EA1, (ii) examined the potential effects on neuronal excitability of all variants using a single compartment conductance-based model and set out to assess the potential of two sodium channel blockers (SCBs: carbamazepine and riluzole) to restore the identified underlying pathophysiological effects of KV1.1 channels, and (iii) provide a comprehensive review of the literature considering all types of episodic ataxia. Results: Reviewing the treatment efforts of EA1 patients revealed moderate response to acetazolamide and exhibited the strength of SCBs, especially carbamazepine, in the treatment of EA1 patients. Biophysical dysfunction of KV1.1 channels is typically based on depolarizing shifts of steady-state activation, leading to an LOF of KCNA1 variant channels. Our model predicts a lowered rheobase and an increase of the firing rate on a neuronal level. The estimated concentration dependent effects of carbamazepine and riluzole could partially restore the altered gating properties of dysfunctional variant channels. Conclusion: These data strengthen the potential of SCBs to contribute to functional compensation of dysfunctional KV1.1 channels. We propose riluzole as a new drug repurposing candidate and highlight the role of personalized approaches to develop standard care for EA1 patients. These results could have implications for clinical practice in future and highlight the need for the development of individualized and targeted therapies for episodic ataxia and genetic paroxysmal disorders in general.

7.
Sleep ; 43(5)2020 05 12.
Article in English | MEDLINE | ID: mdl-31747042

ABSTRACT

Current theories on respiratory control postulate that the respiratory rhythm is generated by oscillatory networks in the medulla: preBötzinger complex (preBötC) is the master oscillator responsible for generating inspiration, while parafacial respiratory group (pFRG) drives active expiration through recruitment of expiratory abdominal (ABD) muscle activity. Research addressing the role of pFRG in ventilation and rhythm generation across sleep states is limited. We recently reported the occurrence of ABD recruitment occurring despite the induction of muscle paralysis during REM sleep. This ABD recruitment was associated with increased tidal volume and regularization of the respiratory period in rats. As pFRG generates active expiration through the engagement of ABD muscles, we hypothesized that the expiratory oscillator is also responsible for the ABD recruitment observed during REM sleep. To test this hypothesis, we inhibited and activated pFRG using chemogenetics (i.e. designer receptors exclusively activated by designer drugs) while recording EEG and respiratory muscle EMG activities across sleep-wake cycles in male Sprague-Dawley rats. Our results suggest that inhibition of pFRG reduced the number of REM events expressing ABD recruitment, in addition to the intensity and prevalence of these events. Conversely, activation of pFRG resulted in an increase in the number of REM events in which ABD recruitment was observed, as well as the intensity and prevalence of ABD recruitment. Interestingly, modulation of pFRG activity did not affect ABD recruitment during NREM sleep or wakefulness. These results suggest that the occurrence of ABD recruitment during sleep is dependent on pFRG activity and is state dependent.


Subject(s)
Respiration , Sleep, REM , Animals , Exhalation , Male , Medulla Oblongata , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...